(NOTE; a search will list key Internet links, then any relevant areas on this site) ......

. . hear physics icon - Hear briefly about this website >> Spoken site intro

New Science Theory - centered chiefly on physics theory

physics graphic William Gilbert . Isaac Newton . Rene Descartes . Albert Einstein ........ Science History . General Image Theory .......... Sitemap . About us
physics graphic
useless atoms picture

Science is basically the combination of good logical reasoning with good practical knowledge of actual natural phenomena. All humans do some logical reasoning and have some practical knowledge of some actual natural phenomena, but most have to busy themselves with feeding themselves and their families as best they can. Few have been able to devote much of their time to reasoning and/or gaining better knowledge of nature, and only some of these have made small or big contributions to science. But poverty reduction has helped boost science, as could a proposed Universal Basic Income, though the quality of science matters more than just its quantity. This website started challenging the failings of modern physics in a non-confrontational limited politic way but, that seemingly not working, has moved to a now more fully honest confrontational non-politic direct challenge that seems really needed. If this may prompt stronger opposition from the many prejudiced in physics, it may also better convince the few relatively unprejudiced in physics.
In considering science theory, this site concentrates on physics theories from the now entirely untaught ideas of William Gilbert, Rene Descartes and Isaac Newton to Albert Einstein and beyond - and we do also have good sections on Galileo Galilei, Johannes Kepler, Nikola Tesla, Gravity, Light, Probability Science, Standard Model Physics, String Theory and physics now, Information Physics, Philosophy of Science and The Solar System.

physics graphic


Get this website as a Zoomable, Searchable and Printable pdf Ebook with helpful Bookmarks - about £2 at New Science Theory PDF Ebook
our Sitemap shows any sections updated since its 6 April 2022 (Or for about £12 get the nice A4 paperback version at New Science Theory book)

PHYSICS NEWS. The biggest physics news for many years was maybe the vastly expensive 2008 CERN Large Hadron Collider (LHC) for 'atom-smashing' experiments in 2012 reporting discovering a new 125GeV particle claimed to be the Standard Model predicted Higgs boson or God particle supposed to explain gravity, though it had been predicted to be around 500GeV. On the data published to now it is maybe at best just 'some new particle' - but the collider's power has been boosted so that it may give a bit more information if not really new experiments. Yet 2017 saw Sarah Charley saying 'Colliders collide nothing, as subatomic particles are largely empty space' at http://www.symmetrymagazine.org/article/whats-really-happening-during-an-lhc-collision. And the first reported detection of gravitational disturbance waves by the US LIGO was called the biggest physics news of 2016 and claimed to suppoprt Einstein's physics. It is good though gravitational disturbance waves are not really an essential of, or peculiar to, Einstein's physics as many are claiming . Gravitational disturbances really also follow from the physics of Newton, though he did not specifically discuss them, and are really of minor significance to physics. The 2017 binary-neutron-star-merger 'gravitational wave' detection was reported as being accompanied by wide multi-band electromagnetic EMR radiation, seemingly being preceded by 6 minutes by a gamma ray burst detection that could maybe have happened 2 seconds after it, and about 11 hours later by a light burst and other EMRs, but Miguel Zumalacarregui claimed it proved Gravity travels at the speed of light ? (see IOP). Astronomy has also produced some more new information in recent years, though maybe nothing really major.

Banned by the Catholic Inquisition, but published in 1600 Protestant England and then pirate-published twice in Protestant Holland, read free online the best English translation of William Gilbert's Latin heretical science De Magnete still of real interest.
The real physics of William Gilbert, a Newton physics option that he privately favoured, also in print 9781326494469 On The Magnet.

And 2012 saw some modern 'mainstream physicists' pushing to abolish the teaching of classical experimental physics in schools as 'obsolete'. They want Newton's light experiments, Galileo's on gravity and Gilbert's on magnetics/electrics to be deleted from human history. It seems that only modern thought-experiment mathematical physics, or conjectural-physics, should be taught. This is pushed at US Presidents in a YouTube video "Open Letter to the President : Physics Education". The physicists concerned must have been taught awful textbook 'classical physics', with no study of the actual works of Newton, Galileo or Gilbert and doing few actual experiments. But modern theoretical physics really fails to explain gravity, magnetism, planet motion and much other basic physics that classical physics considers. This awful attempt at killing real experimental physics and its associated theories can be seen on YouTube at http://www.youtube.com/watch?v=BGL22PTIOAM But all children from age 3 or 4 should first be generally encouraged to experiment and explore with 'let us try this' and 'let us try that' without any particular science in mind and allowing failures and later move on to study William Gilbert and much later study Einstein. Mathematics should also be taught in steps from an early age, and later its use in science. Yet 2015 saw the UK A Level exams move from 'science test' passes requiring a 'theory test' pass AND a 'practical test' pass, to 'science test' passes requiring a 'theory test' pass ONLY. (See https://www.iop.org/news/14/apr/page_63036.html ) And now 'science theory' tests below PhD level are effectively 'narrow coverage science history without dates', while 'science practical' or 'experimental science' tests below PhD level are effectively 'drawing, surgery or plumbing depending on the science'. Neither now really test abilities to theorise OR abilities to experiment, so it is doubtful if any who now make it to a physics PhD have any real science ability. Now more notice should maybe be taken of IQ tests instead.

These science trends fit with education, TV and the internet all being generally dumbed-down now. Good science websites are being dropped in search engine results 'because the average person is not interested in intelligent stuff'. So for science searches all are increasingly served with either completely dumb websites or half-dumb sites like Wikipedia, and science theories now 'win' more by dumb votes than by facts. This website has now basicly moved from an Isaac Newton early-edition more-constrained publishing style to a later-edition or a William Gilbert less-constrained publishing though none were really unconstrained and none worked well for them.

physics graphic

The basis of science theory.

Those who have specialised only in logical reasoning have often been called philosophers, and some of the best of these first emerged in Ancient Greece. The most rigorous logical reasoning, as with Euclid, has often been in the field of mathematics. Those who have specialised only in gaining better knowledge of nature have often been artisans or nature lovers, and their studies often have been concerned with their work or their leisure. Here metallurgy and astronomy were two fairly significant fields of study, with many others. The chief scientific advance in gaining better knowledge of nature came with the realisation that it chiefly needed the precise measurement of natural phenomena so that the rigours of number could replace vagueness and be better amenable to logical reasoning so that the two chief elements of science better combined.

Early ideas on the natural world generally took some vague magical or religious form of theorising, as that natural bodies had life forces or that god caused everything. In line with this, the widely accepted though entirely unproven explanation of gravity by the philosopher Aristotle was that all bodies had 'a natural tendency' to move to their 'natural place'. Such unproven opinion was to be challenged by the emerging experimental science method, chiefly in getting rigorous factual descriptions of more natural phenomena and then in developing all kinds of theories to try to explain the known facts. The many science theories came in two basic types - Black Box theories of laws of universe behaviour like gravity to explain what happens, but not trying to explain why things happen, and full-explanation theories that did seek to explain why things happen.

Hence the chief tools of science are observation and experiment, and the main secondary tools of science are theory and mathematics. And the chief results of science are truths and technologies. Human knowledge of natural phenomena has undoubtedly always been increasing to some extent since our species began, though often in accidental or ad hoc ways and some discoveries have been lost and re-discovered again later. Yet on average human history has involved progress in factual knowledge of nature and in technology deriving from that knowledge as in producing first farming and then industry. Human senses have absolute limits to 'observing' something, but any thing or device that responds to something can be taken as having 'observed' that something. So what many people may call 'unobservable' is in fact now, or in future may well become, 'observable'. However theories of nature showed little or no progress in our early history, and indeed have struggled to show progress in modern times also. One thing this website seeks to draw some attention to is a very interesting largely ignored Gilbert-Newton physics whose basic theory is somewhat better explained by Gilbert, but which physics actual application to nature is somewhat better explained by Newton in his Principia though largely avoiding reference to the theory. But the signal-response information-physics theory ideas basically involved are maybe more important than either Gilbert of Newton, and the idea got lost.

The Black Death first hitting Europe badly from around 1350 and the mini-Ice-Age from around 1400, destabilising life and government and religion, probably encouraged the questioning and innovation that led to the Enlightenment and the rise of science and of modern industry in Europe. But it was maybe not until the 1500's that real planned science emerged first in Europe, with the chief requirement that both good logical reasoning and good practical knowledge of actual natural phenomena must be combined to try to produce valid descriptions of natural phenomena and valid science theories. Though there were earlier neo-science developments such as Alchemy in different parts of the world, the real emergence of science was driven first by Europe wanting to explore and exploit the wider world, and then by Europe's developing industrial revolution. World exploring required use of the astronomer's stars and of the magnetic compass. After his death in 1543 Nicolaus Copernicus published an improved description of heavenly bodies where the Earth correctly orbited the Sun, and a basic compass was in some use from the 1200's.

William Gilbert in 1600 (shortly before his death) published his many science experiments and his physics chiefly concerning magnetism and improved compass use but deriving a rarely understood full-explanation effluvia signal theory of physics relating to the Earth and bodies generally. Another major early scientist then, Galileo Galilei (1564-1642) experimented chiefly in mechanics and astronomy with a little on a random-push physics theory and had a lot of trouble from the catholic church and governments for that and for backing Copernicus, but William Gilbert (1544-1603) working mainly on magnetism in protestant England openly dismissed Aristotle and all philosophising or theorising that was not directly substantiated by scientific experiment, and practised what he preached with his one early publication concentrating on his many experiments and a little on a signal-response attraction physics theory. Galileo supported Gilbert's experimental work but dismissed his theory and Francis Bacon pushed a false-Gilbert no-signals attraction physics, while Johannes Kepler (1571-1630) working in mathematics, optics and astronomy developed a 'forcefield push' version of Gilbert's physics and also backed Copernicus. In response to emerging science attacking different aspects of Aristotle, like Gilbert's 1600 De Magnete and Galileo's 1623 Assayer, the catholic church and its Jesuits reluctantly began dropping Aristotle for ancient greek Atomism theory (of the atheists Leucippus and Democritus, and then chiefly supported in Europe by some alchemists before Galileo adopted it) from around the 1620's to 1640's slowly, while slightly modifying its terminology. Descartes then developed that theory more fully with random-push atoms giving ordered science-law physics from them being assumed to have differing sizes and shapes. This new position then encouraged many scientists to try to comply with that theory.

The philosopher Rene Descartes (1596-1650) produced his mechanical random-push Cartesian physics theory that impressed many as fitting with much of the emerging science - and it was later falsely claimed also fitted with that of the mathematician and physicist Isaac Newton (1643-1727) though his work chiefly favoured Gilbertian attraction theory but settled for a black-box physics theory like a few other physicists then. While advances continued in other sciences, physics theory had to wait about 200 years before Albert Einstein produced his new partial-explanation forcefield spacetime theory. One basic advance in physics then had been the discovery that the originally supposed elementary particles 'atoms' seemed basically mini-solar-systems with smaller particles and mini-action-at-a-distance. Strong evidence that solids are far from solid supported the conclusion that at least some 'pushes' may not be contact pushes and so maybe at least partly supports either a field type physics or a signal type physics where signals establish contact between separated bodies but do no pushing ?

After Newton, physics theory seems to have somewhat sidelined experimental study in favour of mathematical study, so that increasingly universities located theoretical physics in their mathematics departments rather than in physics departments. And certainly new physics theory since Einstein, such as 'string' and 'loop' theory, seems to largely have been on the mathematics and structure of fields and/or of 'elementary' particles as possibly explaining everything somehow though it perhaps is muddy water - and 'fields' may yet be shown to not exist and/or the 'elementary particles' may yet be shown to be mini-mini-solar-systems themselves. In physics the big may be as reasonable a model of the small as vice versa, or not, and a signal physics may yet prove of some use also.

Many have been involved in the development of science, and many more in supporting or opposing it, covering all countries. But the key science theory ideas around physics can perhaps best be seen by going backwards from Einstein. Einstein considered that the theory that he chiefly had to face up to was Newton's, and Newton considered that the theories that he chiefly had to face up to were Descartes' and Gilbert's though Newton was guarded in commenting on Gilbert's attraction physics or remote-control physics. It seems the key physics theories were indeed those of Gilbert, Descartes, Newton and Einstein which this site examines further on other pages in an interrelated way rather than entirely separately. On this site you can start with William Gilbert and somewhat simpler early physics theories and journey on to rather more complex modern physics theories.

While Newton considered various possible explanations of gravity and other 'forces', he ended up publicly supporting none and insisting that physics should support none. He concluded that black-box mathematical behaviour laws were enough for science, and that any explanation must involve untestible unseens and be 'outside science'. This basic conclusion of Newton can certainly be challenged, but Einstein and others ignoring it and wrongly pretending that Newton's theory was a simple billiard ball push theory was one of the worst mistakes in physics theory history. It meant that no physicist has worked from or built on Newton's actual physics position - only on a simplified false 'Newton position' ?

Although Gilbert, Descartes and Newton took science as not allowing contradictions, Einstein and others later adopted 'duality physics' for light and for particles requiring them both to be 'wave' and be 'not-wave' and so allowing contradiction in their science. Not just allowing contrary interpretations and contrary mathematics, but allowing actual contradiction in experiments and in actual nature. This became possible by rejecting earlier strict definitions of 'wave' and 'particle' and basically using no strict definitions, and its acceptance by governments has halted big sciences advances though lots of small technology advances do continue for now at least.

The interest of Gilbert and Newton in at-a-distance force theory or signal physics theory was perhaps before its time and has really been developed by nobody since. Many physicists from Galileo to Einstein ridiculed action-at-distance or remote-control physics as 'impossible', but the invention of the TV Remote and the computer supported Gilbert and Newton against that silly 'disproof'. (Gilbert-Newton physics had forces acting just like the TV Remote and the computer act, but many opponents lying or in ignorance took Gilbert-Newton physics as having forces acting like a TV Remote that emits no signals!) Gilbert and Newton were less interested in the physical nature of any signal emissions, be they particle emissions or energy emissions or wave emissions, than in how bodies experimentally responded to natural signals. Some modern physicists are now talking of a 'quantum-information' physics, a 'quantum computation' physics or a 'digital' physics involving maybe a 'cellular automaton universe' - including among others Pablo Arrighi and Jonathan Grattage affiliated with the University of Grenoble and ENS de Lyon, France (see http://membres-lig.imag.fr/arrighi/). And the possible relevance in physics still of Gilbert-Newton 'attraction signal-response physics' is maybe also even suggested by a recent quote of Google on them letting application developers for their Android phones use C or C++ code "as in signal processing, intensive physics simulations, and some kinds of data processing". For a 'quantum gravity' theory some kind of quantum signal-response theory physics is now maybe looking of more promise ? And a main still-unresolved problem for physics is ARE atomic particles actually some kind of push balls, or do they emit signals and respond for gravity and magnetism ?

It is maybe of some small interest that Einstein was the only one of these four major scientists to marry (and indeed twice) and to have children, suggesting that having a family to feed or other major activities can hinder the development of substantial new science !? Most having no descendants is unfortunate but more positive is the fact they all seem to have retained their mental capacities well in old age - maybe an old-age IQ fall from 100 to 95 gives poor mental functioning but an IQ fall from 165 to 160 still leaves excellent mental functioning when older ? All four were European men, which was also necessary in Europe in those days. It has been claimed seemingly rightly that Einstein's first wife was strongly interested in and competent at mathematics and physics. But in that case it seems that Einstein failed to help his first wife much with that, maybe because he could not afford a nanny or other help for her ? Of course probably more likely because they followed in those times male dominance and female submission in marriage being a strong social norm. (Einstein's wife) Though maybe unclear in Einstein's case some male scientists did have a wife who helped with their science, and in some of those cases the wife help has been perhaps underrated but in some cases perhaps overrated. And when these four produced their main physics ideas none of them was employed in physics, all being 'hobby' or 'amateur' physicists. Gilbert was a royal physician and hobby-physicist, Kepler was an astrologer and hobby-astronomer, Newton was a mathematician and hobby-physicist, and Einstein was maybe lucky that working as a patent official he was accepted as a physicist which would almost certainly not be accepted by todays physics 'professionals'. And these four key scientists are half from England, with Descartes being the sole Catholic though there were other early Catholic scientists. In early Europe it would have been much harder for a woman to fund a science career and maybe also harder for a woman to resist the marriage and child-bearing that could also make a successful science career harder.

The ideas presented on this site are based on extensive studies of William Gilbert and of much of Descartes, Newton and Einstein and others relating to their theories. Currently the internet offers little of these four to read online, and much of their work has still not been translated, so this site will be trying to help with that over time. Science histories often have serious weaknesses , and for basic physics history this website's interpretations are the best and should be studied first, but you may also like a look at a mostly not too unreasonable summary of science history at http://faculty.kirkwood.edu/ryost/chapter1.htm

physics graphic

Good physics experiment and good physics theory.

Physics experiments and physics theories have at times come from very different types of sources, some good and some not. Early good physicists, like Galileo or William Gilbert, often had no physics training and some were self-taught hobby physicists or anti-establishment physicists.

Today some insist that every good physicist must have a physics degree, and that everybody with a physics degree is a good physicist (but we certainly do not have 900,000 Isaac Newtons today, and on physics Newton considered himself self-taught). It may seem more accurate to say that today a good physicist should probably have a physics degree, and that some with a physics degree are probably good physicists.

1. But this issue maybe needs clarifying somewhat to account for the fact that physics involves basically two different aspects - experiment and theory - and useful physics experiment seems to have somewhat less need of formal training than physics theory. Hence most technology advance has been independent of theory, so a computer engineer working for Google may produce some good physics experiments.

2. A further issue concerns the nature of formal physics theory training, in earlier times including substantial philosophy and history of science - but today seeming entirely confined to post-Einstein physics theory. This may suggest that most of today's formally trained physicists may have too narrow a focus to their physics theory ideas, so a philosopher or historian might be better on physics theory.

We should of course still expect most good physics today to come from those with a physics degree, but should not be entirely surprised if some good physics ideas comes from a philosopher or engineer. A modern William Gilbert is possible.

But some are getting very worried that there now seems to be massive backing for eg many-universes 'fiction physics' theories and no backing for 'real physics' theories ? And the real concern with this should be less of right or wrong theories, than of significant physics experiment option areas being closed off now !

Great scientists and great skills

All great scientists do need to have some great skill or skills, but all great scientists do not need to have every possible great skill. But highly skilled people perhaps tend to be one of three skill types ;

1. Mathematicians and rule followers
Some great scientists like Isaac Newton have had great mathematical skill, and have been great at mathematical rule-following reasoning. Of course some of them, maybe also including Isaac Newton, have also had some great artist-artisans rule-breaking experimenting skills.

2. Artist-artisans and rule breakers
Some great scientists like Galileo Galilei have had great artist-artisan skill, and have been great at rule-breaking experimenting. Of course some of them, maybe also including Galileo Galilei, have also had great mathematical rule-following reasoning skill.

3. All-rounders or multi-skilled
Some great scientists may have had great mathematical skill and great artist-artisan skill and equally used both, but some of these may have employed one strength more than the other. These may have been great at rule-following reasoning and great at rule-breaking experimenting, but some of these employed one more than the other. This might depend on their own view of science or of priorities at the time, and some great thinkers and scientists have had different views on that.

Most of the big leaps in science has been the work of great individuals working alone, while many of the smaller advances have come from team collaboration - smaller maybe partly due to teams often being composed of too narrow a range of skill types ? Technology advances have mostly come from experiment and not from theory, as with Galileo inventing the refracting telescope and Newton inventing the superior reflecting telescope being both based on light experiments rather than light theory. Experiment is often more useful than theory, but better theory can lead to better experiment. And honest science has always been the more useful, as in not putting up a false simplified-Newton to knock down. Newton certainly never claimed that a light ray would not bend towards the sun, nor that a gyroscope some miles above Earth would hold a perfectly stable spin. And Newtonian physics does not imply either of these claims. Many modern physicists can seem to show a perhaps low regard for truth at times, and much overplay conjecture theories ? But in science the problem should not be do you experiment, but what are the best actual experiments for you to do of the billions of possible experiments ? Often like now pressures predominate towards doing less useful kinds of experiments, and against doing more innovative 'non-mainstream' kinds of experiment. And well established science prejudices can be almost impossible to shift.

While artist-artisan based skills often show culture differences - as in Egyptian, Roman and other art/science/technology - mathematics has generally developed as one mathematics involving the following of one set of rules. And while science does seem to require that there can be only one actual truth of anything, it can reasonably be claimed that science does not also require that there can be only one valid description of one truth. So modern physics dependence on mathematics only may be inadequate. Art often describes the same thing in different ways successfully, and a science with one mathematics may still validly allow of different image-theory explanations. But a one-truth science does not seem to really allow of contradictory explanations such as Duality Theory in current physics ?

physics graphic

While we do consider science theory generally, this site is the very best at examining the fundamentals of physics. If you want to really learn physics then this website really helps people with mastering physics online, and can also point you to some of the best other online physics sources.

Online translators by Google, Microsoft and other browsers have problems, as not translating pdfs and translating website sections only if they are below some size limits. (but you may be able to repeat Copy/Paste into Google Translate, or others, multiple bits of say about 1000 words.) This website has some small sections and some very big sections, so if you are a non-English speaker in a non-English land and have problems translating part of this website do email vincent@new-science-theory.com or Tweet/X me at @vwilmot

PS. Some might say that the last 50 years has maybe seen no significant new physics theory published and no really new physics experiments, and maybe generally business and government hijack any new science to their own ends anyway, leaving little real value to any new science ? Some incremental technology change has certainly continued, though maybe giving more new problems in pollution and medicine than answers. When in 1959 I was offered a physics place at Imperial College London they showed me some of their cloud-chamber 'atom collision' experiments. I saw those nice cloud-chamber spirals as unlikely to be due to any collisions or pushes as commonly claimed, and as more likely being responses to some signals as moths respond to light from a light source. But for the last 50 years I have been sitting on a new general science theory and new physics experiments, that I cannot afford to run, developed after the first BSc degree I took in Biology and Chemistry. Then for a second BSc degree when I took year 1 Philosophy, I part ran it past the Professor of Philosophy who had been a Physicist, in a 1985 essay for him on the history of physics. He gave that top marks and promptly made several attempts to get me to switch to majoring in philosophy under him (which I would have done but at that time I could not see it as a practical career option for feeding my new wife and baby and owed some loyalty to my then City University mentor Andrew Mott). But being satisfied that the basics of my new general science theory may possibly be worth at least a temporary publishing rather than just all dying with me, I have now put the basics of it on this website - in the hope that you may find it interesting (and this website is all interrelated so studying all of it should help you understand it). Additionally, this site simply tries to clarify some of the basics of science theory history to date as I see it - though many do interpret science history differently and often very wrongly. Some of the problems involved in the history of science are discussed in our Science History, or you can check our Site Map.

physics graphic


(Two websites to slightly help inform you on what physicists and astronomers are up to lately are Physics World at http://physicsworld.com and Universe Today at http://www.universetoday.com)

AND get the must-have book for anyone really interested in science, William Gilbert's 1600 "On The Magnet ..." ;

William Gilbert On The Magnet

+ Do try our great Newtonian gravity App - 'Sun Pull' - to help you study or re-design the solar system better, in our Solar System section, which also discusses what is probably chiefly needed for real actual contact with 'alien' people from other worlds. Hopefully more useful science Apps may follow, though the Google Play app store, Microsoft store and Apple store will probably all ban them in their bureaucratic rule changes ?!

OR if you would like to make a donation to help with site development, and just possibly with some crucial basic physics experiments long planned but never afforded. Maybe we can produce a gravity beam ? And do see the bottom of our other main sections. The main science funders today are governments and businesses, but they have their own aims and rarely fund the best science. Any experiments they are funding are 'safe science', which are basically old experiments using a bit more power or a bit more accuracy, and they totally avoid funding any 'unsafe science' original experiments like ours.

physics graphic

You are welcome to link to this website homepage, eg www.new-science-theory.com/ OR on Twitter.com/X, see @vwilmot- physics twitter graphic -
This website is by Vincent Wilmot and you can read a brief biography at Vincent Wilmot. (Or on this website you can see his diet and basic health at the bottom of the Probability Science section.)

© new-science-theory.com, 2025 - taking care with your privacy, see Privacy Policy

Hosted by :- Science Hosting